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In this work, in order to compute energy and momentum distributions (due to matter
plus fields including gravitation) associated with the Brans–Dicke wormhole solutions
we consider Møller’s energy-momentum complexes both in general relativity and the
teleparallel gravity, and the Einstein energy-momentum formulation in general relativ-
ity. We find exactly the same energy and momentum in three of the formulations. The
results obtained in teleparallel gravity is also independent of the teleparallel dimen-
sionless coupling parameter, which means that it is valid not only in the teleparallel
equivalent of general relativity, but also in any teleparallel model. Furthermore, our
results also sustains (a) the importance of the energy-momentum definitions in the eval-
uation of the energy distribution of a given spacetime and (b) the viewpoint of Lessner
that the Møller energy-momentum complex is a powerful concept of energy and mo-
mentum. (c) The results calculated supports the hypothesis by Cooperstock that the
energy is confined to the region of non-vanishing energy-momentum tensor of matter
and all non-gravitational fields.
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1. INTRODUCTION

The first locally conserved energy-momentum formulation was constructed
by Einstein (1915). Consequently, several energy-momentum prescriptions have
been proposed (Bergmann and Thomson, 1953; Landau and Lifshitz, 2002;
Møller, 1958, 1961a,b; Papapetrou, 1948; Qadir and Sharif, 1952; Tolman, 1934;
Weinberg, 1972). Except for the Møller definition these formulations only give
meaningful results if the calculations are performed in Cartesian coordinates.
Møller proposed a new expression for energy-momentum complex which could
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be utilized to any coordinate system. Next, Lessner (1996) argued that the Møller
prescription is a powerful concept for energy-momentum in general relativity.
This approach was abandoned for a long time due to severe criticism for a num-
ber of reasons (Bergqvist, 1972a,b; Chandrasekhar and Ferrari, 1991; Chen and
Nester, 1999). Virbhadra and collaborators revived the interest in this approach
(Aguirregabiria et al., 1996; Rosen and Virbhadra, 1993, 1995; Virbhadra,
1990a,b,c; 1991, 1992, 1995a,b, 1999; Virbhadra and Parikh, 1993, 1994a,b)
and since then numerous works on evaluating the energy and momentum distri-
butions of several gravitational backgrounds have been completed (Grammenos
and Radinschi, gr-qc/0602105; Radinschi, 1999, 2000a,b, 2001, 2002, 2004;
Vagenas, 2003a,b, 2004, 2005; gr-qc/0602107; Xulu, 1998, 2000a,b,c, 2003;
Yang and Radinschi, 2003). Later attempts to deal with this problematic issue
were made by proposers of quasi-local approach. The determination as well as
the computation of the quasi-local energy and quasi-local angular momentum of
a (2 + 1)-dimensional gravitational background were first presented by Brown
et al. (1994). A large number of attempts since then have been performed to
give new definitions of quasi-local energy in Einstein’s theory of general relativ-
ity (Brown et al., 1997; Hayward, 1994; Hawking and Horowitz, 1996; Liu and
Yau, 2003; Yau, 2001). Furthermore, according to the Cooperstock hypothesis
(Cooperstock, 1992, 1993, 1997, 2000), the energy is confined to the region of
non-vanishing energy-momentum tensor of matter and all non-gravitational fields.

Recently, the problem of energy-momentum localization has also been con-
sidered in teleparallel gravity (Nashed, 2002; Vargas, 2004). Møller showed that a
tetrad description of a gravitational field equation allows a more satisfactory treat-
ment of the energy-momentum complex than does general relativity. Therefore,
we have also applied the super-potential method by Mikhail et al. (1993) to calcu-
late the energy of the central gravitating body. In (Nashed, 2002; Vargas, 2004);
Vargas, using the definitions of Einstein and Landau–Lifshitz in teleparallel
gravity, found that the total energy is zero in Friedmann–Robertson–Walker
space-times. There are also several papers on the energy-momentum problem
in teleparallel gravity. The authors obtained the same energy-momentum for dif-
ferent formulations in teleparallel gravity (Aydogdu, 2006a,b; Aydogdu et al.,
2005; Aydogdu and Saltı, 2006; Havare et al., 2006; Saltı, 2005a,b,c, 2006; Saltı
and Aydogdu, 2006; Saltı and Havare, 2005). Considerable efforts have also been
performed in constructing super-energy tensors (Senovilla, 2000). Motivated by
the works of Bel (1958, 1960, 1962) and independently of Robinson (Robin-
son, 1997), many investigations have been carried out in this field (Bonilla and
Senovilla, 1997; Garecki, 2001; Lazkog et al., 2003).

The paper is organized as follows. In the next section, we introduce the
Brans–Dicke wormhole solutions. In Section 3, we calculate energy-momentum
in general relativity using Møller and Einstein’s energy-momentum prescriptions.
Next, in Section 4, we find energy-momentum in Møller’s tetrad theory of gravity.
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Finally, Section 5 is devoted to conclusions. Notations and conventions: c = G =
1, metric signature (−,+,+,+), Greek indices run from 0 to 3 and, Latin ones
from 1 to 3. Throughout this paper, Latin indices (i, j , . . .) number the vectors,
and Greek indices (µ, ν, . . .) represent the vector components.

2. THE BRANS–DICKE WORMHOLE SOLUTIONS

There is a revival of interest in the Brans–Dicke theory due principally to
the following reasons: The theory occurs naturally in the low energy limit of
the effective string theory in four dimensions or the Kaluza–Klein theory. It is
found to be consistent not only with the weak field solar system tests but also
with the recent cosmological observations. Moreover, the theory accommodates
Mach’s principle (It is known that Einstein’s theory of general relativity cannot
accommodate Mach’s principle satisfactorily) (Nandi and Zhang, 2006).

A less well known yet an important area where the Brans–Dicke theory has
found immense applications is the field of wormhole physics, a field recently re-
activated by the seminal work of Morris and colleagues (Morris and Thorne, 1988;
Morris et al., 1988). Wormholes are topological handles that connect two distant
regions of space. These objects are invoked in the investigations of problems
ranging local to cosmological scales, not to mention the possibility of using these
objects as a means of interstellar travel. Wormholes require for their construction
what is called “exotic matter”—matter that violate some or all of the known energy
conditions, the weakest being the averaged null energy condition. Such matters are
known to arise in quantum effects. However, the strongest theoretical justification
for the existence of exotic matter comes from the notion of dark energy or phantom
energy that are necessary to explain the present acceleration of the universe (Nandi
and Zhang, 2004, 2006; Nandi et al., 1998, 2004).

The string action, keeping only linear terms in the string tension α and in the
curvature R, takes the following form in the matter free region (SMatter = 0):

SString = 1

α

∫
d4x

√−ge−2�
[
R + 4gµν∂µ�∂ν�

]
(1)

where gµ,ν is the string metric and � is the dilaton field. Note that the zero values
of other matter fields do not impose any additional constraints either on the metric
or on the dilaton (Kar, 1999). Under the substitution e−2� = ψ , the above action
reduces to the Brans–Dicke action

SBrans–Dicke =
∫

d4x
√−g

[
ψR + 1

ψ
gµν∂µψ∂νψ

]
(2)

in which the Brans–Dicke coupling parameter ω = −1. This particular value
is actually model independent and it actually arises due to the target space
duality. It should be noted that the Brans–Dicke action has a conformal invariance
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characterized by a constant gauge parameter ζ (Cho, 1992). Arbitrary values of
can actually lead to a shift from the value ω = −1, but fix this ambiguity by
choosing ζ = 0.

Under a further substitution

g̃µν = ψgµν (3)

dϕ =
√

2ω + 3

2α′
dψ

ψ
, α′ �= 0, ω �= 3

2
(4)

in which we have introduced, on purpose, a constant parameter α′ = 0 that can
have any sign. Then the Brans–Dicke action transforms into the form of the Ein-
stein minimally coupled scalar field theory (EMCSFT) action (Nandi and Zhang,
2006)

SEMCSFT =
∫

d4x
√−g

[
ψR + 1

ψ
gµν∂µψ∂νψ

]
(5)

The EMCSFT equations are given by

Rµν = −α′∂µϕ∂νϕ (6)

ϕµ
;µ = 0 (7)

Let us now consider the class I EMCSFT solution due to Buchdahl (1959)

ds2 = −
(

1 − m

2r

)2β (
1 + m

2r

)−2β

dt2

+
(

1 − m

2r

)2(1−β) (
1 + m

2r

)2(1+β)
[dr2 + r2(dθ2 + sin2 θdφ2)] (8)

and we also have

ϕ (r) =
√

2
(
β2 − 1

)
α′ ln

[(
1 − m

2r

) (
1 + m

2r

)−1
]

(9)

where m and β are two arbitrary constants. The metric can be expanded to give

ds2 = −
(

1 − 2M

r
+ 2M2

r2
+ O

(
1

r3

))
dt2

+
(

1 − 2M

r
+ O

(
1

r3

))
[dr2 + r2(dθ2 + sin2 θdφ2)] (10)

from which one can read of the Keplerian mass M = mβ. The metric has a
naked singularity at r = m

2 . For β = 1, it reduces to the Schwarzschild solution in
isotropic coordinates. For α′ = 1 and β > 1, it represents a traversable wormhole.
It is symmetric under inversion of the radial coordinate r → r−1 and we have
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two asymptotically flat regions (at r = 0 and r = ∞) connected by the throat
occurring at r+

0 = m
2 [β +

√
β2 − 1]. Thus real throat is guaranteed by β2 > 1.

For the choice α′ = 1, the quantity
√

2(β2 − 1) is real such that there is a real
scalar charge σ from the line-element (8) given by

ϕ = σ

r
= −2m

r

√
β2 − 1

2
(11)

But in this case, we have violated almost all energy conditions in importing by
hand a negative sign before the kinetic term in equations (6) and (7). Alternatively,
we could have chosen α′ = −1 in equation (8), giving an imaginary charge σ . In
both cases, however, we end up with the same equation Rµν = −∂µϕ∂νϕ. There
is absolutely no problem in accommodating an imaginary scalar charge in the
wormhole configuration (Nandi and Zhang, 2004, 2006; Nandi et al., 1998, 2004;
Armendáriz-Pı́con, 2002).

3. FOUR-MOMENTUM IN GENERAL RELATIVITY

The aim of this part of the study is to evaluate energy distribution associated
with the black holes given above. The Møller and Einstein energy-momentum
complexes will be considered.

In general relativity, Møller’s energy-momentum complex is given by
(Møller, 1958, 1961a,b)

ν
µ = 1

8π

∂χνα
µ

∂xα
(12)

satisfying the local conservation laws:

∂ν
µ

∂xν
= 0 (13)

where the antisymmetric super-potential χν
µ is

χνα
µ = √−g

{
∂gµβ

∂xγ
− ∂gµγ

∂xβ

}
gνγ gαβ. (14)

The locally conserved energy-momentum complex ν
µ contains contributions from

the matter, non-gravitational and gravitational fields. 0
0 is the energy density and

0
a are the momentum density components. The momentum four-vector definition

of Møller is given by
∫ ∫ ∫

0
µdxdydz. (15)
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Using Gauss’s theorem, this definition transforms into

Pµ = 1

8π

∫ ∫
χ0a

µ µad/S (16)

where µa (where a = 1, 2, 3) is the outward unit normal vector over the infinites-
imal surface element dS. Pi give momentum components P1, P2, P3 and P0 gives
the energy.

For the space-time of Brans–Dicke wormhole, gµν , is defined by

gµν = −
(

1 − 2M

r
+ 2M2

r2
+ O

(
1

r3

))
δ0
µδ0

ν +
(

1 − 2M

r
+ O

(
1

r3

))
δ1
µδ1

ν

+
(

1 − 2M

r
+ O

(
1

r3

))
r2δ2

µδ2
ν +

(
1 − 2M

r
+ O

(
1

r3

))
r2 sin2 θδ3

µδ3
ν ,

(17)

and its inverse gµν is

gµν = −
(

1 − 2M

r
+ 2M2

r2
+ O

(
1

r3

))−1

δ
µ

0 δν
0

+
(

1 − 2M

r
+ O

(
1

r3

))−1

δ
µ

1 δν
1

+δ
µ

2 δν
2

2

(
1 − 2M

r
+ O

(
1

r3

))−1

+ δ
µ

3 δν
3

r2 sin2 θ

(
1 − 2M

r
+ O

(
1

r3

))−1

. (18)

The required non-zero component of the super-potential of Møller, for the
line-element (10), is

χ01
0 (r, θ ) =

2M sin θ
(

1 − 4M
r

+ 4M2

r2

)
√

1
r3

(
r3 − 4M3 − 4Mr2 + 6M2r

) (19)

while the momentum density distributions take the form

0
1 = 0, 0

2 = 0, 0
3 = 0. (20)

Therefore, if we substitute these results into equation (15), we get the total energy
that is contained in a sphere of radius r

EMøller(r) =
M

(
1 − 4M

r
+ 4M2

r2

)
√

1
r3

(
r3 − 4M3 − 4Mr2 + 6M2r

)
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= ℵ3r− 1
2 − ℵ

4
r

1
2 + 3

32ℵ r
3
2 + O

(
r

5
2 big) (21)

which are also the energy (mass) of the gravitational field that a neutral particle
experiences at a finite distance r. Here, we have defined that ℵ = (−M)1/2 (re-
member M = mβ, and m and β are arbitrary constants). Additionally, we can find
the momentum components which are given by

�PMøller(r) = 0. (22)

The formulation of Einstein (1915a,b) is defined as

�ν
µ = 1

16π
Hνα

µ,α (23)

where

Hνα
µ = gµβ√−g

[−g(gνβgαξ − gαβgνξ )],ξ (24)

In the equation above, �0
0 is the energy density, �0

a are the momentum density
components, and �a

0 are the components of energy-current density. The Einstein
energy and momentum density satisfies the local conservation laws

∂�ν
µ

∂xν
= 0 (25)

and the energy-momentum components are given by

Pµ =
∫ ∫ ∫

�0
µdxdydz. (26)

Pµ is called the momentum four-vector, Pa give momentum components P1, P2,
P3 and P0 gives the energy.

In order to use the Einstein energy-momentum complex, we have to transform
the line element (10) in quasi-Cartesian coordinates. By using the relations

x = r sin θ cos φ (27)

y = r sin θ sin φ, (28)

z = r cos θ, (29)

one gets

ds2 = −Adt2 + D(dx2 + dy2 + dz2) + B − D

r2
(xdx + ydy + zdz)2 . (30)

Where,

A = 1 − 2M

r
+ 2M2

r2
+ O

(
1

r3

)
, B = D = 1 − 2M

r
+ O

(
1

r3

)
. (31)
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Using this metric, one gets the following expressions for the energy

EEinstein = M

(
1 − 4M

r
+ 4M2

r2

) (
1 − 4M

r
+ 6M2

r2
− 4M3

r3

)− 1
2

= ℵ3r− 1
2 − ℵ

4
r

1
2 + 3

32ℵ r
3
2 + O

(
r

5
2
)

(32)

and for the momentum components

P
(Einstein)
1 = P

(Einstein)
2 = P

(Einstein)
3 = 0. (33)

4. FOUR-MOMENTUM IN TELEPARALLEL GRAVITY

In this part of the study, we calculate energy-momentum distribution associ-
ated with a given space-time model in Møller’s tetrad theory of gravity.

Møller modified general relativity by constructing a new field theory in
teleparallel space. The aim of this theory was to overcome the problem of the
energy-momentum complex that appears in Riemannian space (Møller, 1961a,b,
1978). The field equations in this new theory were derived from a Lagrangian
which is not invariant under local tetrad rotation. Saez (1983) generalized Møller
theory into a scalar tetrad theory of gravitation. Meyer (1982) showed that Møller
theory is a special case of Poincare gauge theory (Hayashi and Shirafuji, 1980a,b;
Hehl et al., 1980).

In a space-time with absolute parallelism the teleparallel vector fields h
µ

i

define the non-symmetric connection

�α
µβ = hα

i hi
µβ (34)

where hi
µ,β = ∂βhi

µ. The curvature tensor which is defined by �α
µβ is identically

vanishing.
Møller constructed a gravitational theory based on this space-time. In this

gravitation theory the field variables are the 16 tetrad components h
µ

i from which
the metric tensor is defined by

gαβ = hα
i h

β

i ηij (35)

We assume an imaginary value for the vector h
µ

0 in order to have a Lorentz
signature. We note that, associated with any tetrad field h

µ

i there is a metric field
defined uniquely by Eq. (35), while a given metric gαβ doesn’t determine the tetrad
field completely; for any local Lorentz transformation of the tetrads h

µ

i leads to
a new set of tetrads which also satisfy Eq. (35). The lagrangian L is an invariant
constructed from ξαβµ and gαβ , where ξαβµ is the con-torsion tensor given by

ξαβµ = hiαhi
β;µ (36)
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where the semicolon denotes covariant differentiation with respect to Christoffel
symbols {

α

µν

}
= 1

2
gαβ(∂µgβν + ∂νgβµ − ∂βgµν) (37)

The most general Lagrangian density invariant under the parity operation is given
by the following form

L = √−g
(
m1�

ρ�ρ + m2ξ
αβµ + m3ξ

αβµξαβµ

)
(38)

where g = det(gαβ), and �ρ is the basic vector field defined by

�µ = ξρ
µρ (39)

Here, m1, m2 and m3 are constants determined by Møller such that the theory
coincides with Einstein’s theory of general relativity in the weak fields,

m1 = −1

κ
m2 = λ

κ
m3 = 1

κ
(1 − 2λ) (40)

where κ is the Einstein constant and λ is a free dimensionless parameter. The same
choice of the parameters was also obtained by Hayashi and Nakano (1967).

Møller applied the action principle to the Lagrangian density given by
Eq. (38) and obtained the field equation in the form

Gαβ + Hαβ = −κTαβ (41)

Fαβ = 0 (42)

where Gαβ is the Einstein tensor, and defined by

Rαβ − 1

2
gαβR = Gαβ. (43)

Here, Hαβ and Fαβ are given by

Hαβ = λ

[
ξµναξ

µν
β + ξµναξ

µν
β + ξµνβξµν

α + gαβ

(
ξµνλξ

λνµ − 1

2
ξµνλξ

µνλ

)]

(44)

Fαβ = λ
[
�α,β − �β,α − �ρ

(
ξ

ρ
αβ − ξ

ρ
βα

) + ξ
ρ
αβ;ρ

]
(45)

and they are symmetric and skew symmetric tensors, respectively.
Møller assumed that the energy and momentum tensor of the matter fields is

symmetric. In the Hayashi–Nakano theory, however, the energy and momentum
tensor of spin- 1

2 fundamental particles has a non-vanishing anti-symmetric part
arising from the effects due to intrinsic spin, and the right-hand side of Eq. (42)
doesn’t vanish when we take into account the possible effects of the intrinsic spin.
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It can be shown (Hayashi and Shirafuji, 1979) that the tensors, Hαβ and Fαβ ,
consist of only those terms which are linear or quadratic in the axial-vector part
of the torsion tensor, ζρ , given by

ζρ = 1

3
ερµλξ

µνλ. (46)

Where, ερµνλ is given by following definition

ερµνλ = √−gδρµνλ (47)

and δρννλ being completely anti-symmetric and normalized as δ0123 = −1. There-
fore, both Hαβ and Fαβ vanish if the ζρ is vanishing. In other words, when ζρ is
found to vanish from anti-symmetric part of field equations (42) and symmetric
part of (41) coincides with the Einstein equation.

The super-potential of Møller’s in teleparallel gravity is given by Mikhail
et al. (1993) as

Uνβ
µ = (−g)1/2

2κ
P τνβ

χρσ

[
�ρgσχgµτ − λgτµξχρσ − (1 − 2λ) gτµξσρχ

]
(48)

with P
τµβ

ζρσ is

P τµβ
χρσ = δτ

χgνβ
ρσ + δτ

ρgνβ
σχ − δτ

σ gνν
χρ (49)

with gνβ
ρσ being a tensor defined by

gνβ
ρσ = δν

ρδ
β
σ − δν

σ δβ
ρ . (50)

The energy-momentum density is defined by Møller (1961a,b, 1978)

�β
σ = U

βλ

α,λ (51)

where comma denotes ordinary differentiation. The energy E and momentum
components Pi are expressed by the volume integral Møller (1961a,b, 1978),

E = lim
r→∞

∫
r=constant

�0
0dxdydz, (52)

Pi = lim
r→∞

∫
r=constant

�0
i dxdydz, (53)

Here, the index of i takes the value from 1 to 3. The angular momentum of a
general relativistic system is given by Møller (1961a,b, 1978)

Ji = lim
r→∞

∫
r=constant

(
xj�

0
k − xk�

0
j

)
dxdydz (54)

where i, j and k take cyclic values 1, 2 and 3. We are interested in determining the
total energy, and the momentum components.
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The general form of the tetrad, h
µ

i , having spherical symmetry was given by
Robertson (1932). In the Cartesian form it can be written as

h0
0 = iW, h0

a = Zxa, hα
0 = iHxα, hα

a = Kδσ
a + Sxaxα + εaαβGxβ.

(55)
Where, W, K, Z, H, S, and G are functions of t and r = √

xaxa , and the zeroth
vector h

µ

0 has the factor i2 = −1 to preserve Lorentz signature, and the tetrad of
Minkowski space-time is h

µ
a = diag(i, δα

a ) where (a = 1, 2, 3). Using the general
coordinate transformation

haµ = ∂Xν ′

∂Xµ
haν (56)

where {Xµ} and {Xv′ } are, respectively, the isotropic and Schwarzschild co-
ordinates (t, r, θ, φ). In the spherical, static and isotropic coordinate system
X1 = r sin θ cos φ, X2 = r sin θ sin φ, X3 = r cos θ . We obtain the tetrad com-
ponents of h

µ
a as⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i√
1− 2M

r
+ 2M2

r2 +O
(

1
r3

) 0 0 0

0 1√
1− 2M

r
+O

(
1
r3

) sθcφ 1

r

√
1− 2M

r
+O

(
1
r3

)cθcφ
sφ

r

√
1− 2M

r
+O

(
1
r3

)
sθ

0 1√
1− 2M

r
+O

(
1
r3

) sθcφ 1

r

√
1− 2M

r
+O

(
1
r3

)cθsφ
cφ√

1− 2M
r

+O
(

1
r3

)
sθ

0 1√
1− 2M

r
+O

(
1
r3

)cθ 1

r

√
1− 2M

r
+O

(
1
r3

) sθ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(57)
where i2 = −1. Here, we have introduced the following notation: sθ = sin θ ,
cθ = cos θ , sφ = sin φ and cφ = cos φ. After performing the calculations (TCI
Software Research, 2003; Wolfram Research, 2003), the required non-vanishing
components of ξαβµ are found as

ξ 0
01 = M (r + 2M)

r
(
r2 − 2Mr − 2M2

) (58)

ξ 1
11 = M

r2 − 2Mr
(59)

ξ 1
22 = − (

ξ 2
12

)−1 = (
ξ 3

13

)−1 = 1

sin2 θ
ξ 1

33 = −r

√
r (r − 2M)

r2 − 2Mr − 2M2
(60)

ξ 3
31 = ξ 2

21 = 1

r

(
1 + M

r − 2M

)
(61)
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ξ 2
33 = − sin 2θ

2
(62)

ξ 3
23 = ξ 3

32 = cot θ (63)

and the non-vanishing components of �µ are

�1 = M

r2 − 2Mr
− 1

r

√
r2 − 2Mr − 2M2

r (r − 2M)
, �2 = cot θ. (64)

Next, we obtain the required Møller’s super-potentials of
∑µβ

µ as following

�01
0 = 2M sin θ

κ

(
1 − 4M

r
+ 4M2

r2

)(
1 − 4M

r
+ 6M2

r2
− 4M3

r3

)− 1
2

(65)

while the momentum density distributions take the form

�0
1 = 0, �0

2 = 0, �0
3 = 0. (66)

Hence, we find the following energy

ET P
Møller (r) = ℵ3r− 1

2 − ℵ
4

r
1
2 + 3

32ℵ r
3
2 + O

(
r

5
2

)
(67)

Here, TP means teleparallel gravity, and we have defined again ℵ = (−M)
1
2 . Next,

one can easily see that the momentum components are

�P T P
Møller (r) = 0 (68)

These results are exactly the same as obtained in the general relativity analog of
Møller energy-momentum formulation. It is evident that the teleparallel gravita-
tional results are independent of teleparallel dimensionless coupling parameter
λ which means that these results are valid not only in teleparallel equivalent of
general relativity but also in any teleparallel model.

5. SUMMARY AND FINAL COMMENTS

The problem of energy-momentum localization has been one of the most
interesting and thorny problems which remains unsolved since the advent of
Einstein’s theory of general relativity and tetrads theory of gravity. Misner et al.
(1973) argued that the energy is localizable only for spherical systems. Cooper-
stock and Sarracino (1978) contradicted their viewpoint and argued that if the
energy is localizable in spherical systems then it is also localizable for all systems.
Bondi (1990) expressed that a non-localizable form of energy is inadmissible in
relativity and its location can in principle be found. Cooperstock hypothesized
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that in a curved space-time energy-momentum is/are confined to the region of
non-vanishing energy-momentum tensor Tµν and consequently the gravitational
waves are not carriers of energy and/or momentum in vacuum space-times. This
hypothesis has neither been proved nor disproved. There are many results that
support this hypothesis (Xulu, 2000a,b,c, 2003).

The problem of calculating energy-momentum distribution of the universe
has been considered both in Einstein’s theory of general relativity and telepar-
allel theory of gravity. From the advents of these different gravitation theo-
ries various methods have been proposed to deduce the conservation laws that
characterize the gravitational systems. The first of such attempts was made by
Einstein who proposed an expression for the energy-momentum distribution of
the gravitational field. There exists an opinion that the energy-momentum def-
initions are not useful to get finite and meaningful results in a given geometry.
Virbhadra and his collaborators re-opened the problem of the energy and momen-
tum by using the energy-momentum complexes. The Einstein energy-momentum
complex, used for calculating the energy in general relativistic systems, was fol-
lowed by many complexes: e.g. Tolman, Papapetrou, Bergmann-Thomson, Møller,
Landau-Liftshitz, Weinberg, Qadir-Sharif and the teleparallel gravity analogs of
the Einstein, Landau-Lifshitz, Bergmann-Thomson and Møller prescriptions. The
energy-momentum complexes give meaningful results when one transforms the
line element in quasi-Cartesian coordinates. The energy and momentum com-
plex of Møller gives the possibility to perform the calculations in any coordinate
system. To this end Virbhadra and his collaborators have considered many space-
time models and have shown that several energy-momentum complexes give the
same and acceptable results for a given spacetime. Vargas using the definitions of
Einstein and Landau-Lifshitz in teleparallel gravity, found that the total energy is
zero in Friedmann–Robertson–Walker spacetimes.

In this study, we have calculated the energy-momentum distributions (due
to matter and fields including gravity) of the Brans–Dicke wormhole solutions
in general relativity by using Møller and Einstein energy-momentum formula-
tions, and also in Møller’s tetrad theory of gravity (the teleparallel geometry).
We find the same energy in the three of the techniques. Our results show that
the Møller energy-momentum formulation in general relativity and its teleparallel
gravitational analog agree with each other. Also we obtained that the momentum
components are equal to zero in three of the formulations:

ET P
Møller = EMøller (r) = EEinstein (r) = ℵ3r− 1

2 + 3

32ℵ r
3
2 + O

(
r

5
2

)
(69)

�P T P
Møller (r) = �PMøller (r) = �PEinstein (r) = 0. (70)

Next, the teleparallel gravitational results are independent of the teleparallel
dimensionless coupling parameter, which means that they are valid in any
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teleparallel model. Furthermore, this paper sustains (a) the importance of the
energy-momentum definitions in the evaluation of the energy distribution of a
given space-time, (b) the viewpoint of Lessner that the Møller energy-momentum
complex is a powerful concept of energy and momentum, and (c) the hypoth-
esis by Cooperstock that the energy is confined to the region of non-vanishing
energy-momentum tensor of matter and all the non-gravitational fields.
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